Present and Future Computing needs in Uncertainty Quantification for Large-scale Multi-physics Models

Charles Tong
Lawrence Livermore Lab

UQ Challenges for Multi-physics Applications

- Difficult to prescribe parameter uncertainties (the priors)
- High-dimensionality of the uncertain parameters (10's -100's)
- High-dimensionality of the model outputs
- Models may be expensive to evaluate (many CPU-hours)
- Complex models show highly nonlinear (may be discontinuous) inputoutput relationships
- Data scarcity for the full system
- Models are often created by data far from operating conditions
 - extrapolation may be needed
- Structural uncertainties are difficult/expensive to quantify
- "Unknown unknowns" can greatly complicate the UQ process.

In order to perform UQ, we need

- A UQ methodology
 - A well-thought process/plan with a well-defined objective
 - Consisting of a number of steps
 - Each step may require expert judgment or suitable UQ algorithms
- Relevant UQ methods (forward propagation, SA, calibration)
 - Intrusive methods (one large simulation)
 - Non-intrusive methods (many smaller simulations)
 - Hybrid (intrusive+nonintrusive) methods (a number of medium simulations)
- Adequate hardware/software infrastructure to perform UQ
 - Job management: scheduling, monitoring
 - Data processing
 - Analysis and visualization of results

An example UQ methodology

- 1. Define the objective of the UQ study (e.g. quantify risk)
- 2. Problem specification (model, code version, assumptions, QOI)
- 3. Perform verification experiments (to assess numerical errors) (*)
- 4. Preliminary model/parameter identification and selection
- 5. Apply component/subsystem data fusion methodologies (***)
- **6.** Apply parameter dimension reduction (**)
- 7. Response surface modeling (***)
- 8. Apply quantitative uncertainty/sensitivity analysis (*)
- 9. Validation, system level calibration, predictability assessment (*)
- 10. Expert reviews, documentation
- * Small ensemble runs (O(10))
- ** Moderate number of runs (a few hundred)
- *** Large ensemble calculations (thousands)

Multi-physics UQ Project

- Demonstrate a predictive capability for a DOE NNSA application
- Project lasts until 2018 with first and second pegposts by 2012 and 2014
- Present focus: subsystem predictive capability
 - Use state-of-the-art physics models
 - Multiple events with common physics models
 - Physics-level data for calibration
 - Multi-event system level calibration
 - Assess uncertainties/sensitivities and prediction on a holdout event
 - Number of uncertain parameters in this case ~20
- Ensemble run modes (capacity computing?)
 - Grab a partition for n days
 - Use job submission system + daisy chain for automation

Current HPC Methods

- Algorithms used:
 - implicit/explicit hydrodynamics
 - material strengths and equation of states, etc.
- Codes: LLNL multi-physics codes
- Quantities that affect the problem size/scale of the simulations:
 - Spatial dimension, mesh sizes (each simulation)
 - Complexity of output of interest (sample size)
 - Number of events used (sample size)
- Parallelism expressed in
 - MPI within each simulation
 - Independent ensemble calculations
 - Multi-prob mode

Current HPC Requirements

- Facilities used: LLNL
- Architectures currently used:
 - Linux clusters (AMD/IBM PowerPC)
- Compute/memory load:
 - 1000's run each 128 processors/12 hours
- Data read/written: O(100) Mbytes per run (on LLNL storage)
- Necessary software, services or infrastructure
 - job submission system
- Known limitations/obstacles/bottlenecks:
 - resource availability when needed
- Hours requested/allocated/used in 2010 : ~10M CPU hours

HPC Usage and Methods for the Next 3-5 Years

- Upcoming changes to codes/methods/approaches
 - Same code (newer versions), different multi-physics models
 - UQ study of many models together (instead of one or a few)
 - Possibly look into 3D problems and/or 2D with higher resolution
- Changes to Compute/memory load
 - 2011 project: ~10000 runs (12 hours on 128 nodes)
 - 2011 project: 10000-100000 runs (12 hours on 128 nodes)
 - 2012 on: don't know yet
- Changes to Data read/written: same for each run
- Changes to necessary software, services or infrastructure: none
- Anticipated limitations/obstacles/bottlenecks on 10K-1000K PE system.
 - Fault management, job submission
 - Parallel I/O (esp. I)
 - Programming model not a problem yet

Strategy for New Architectures

- How are you dealing with, or planning to deal with, many-core systems that have dozens or hundreds of computational cores per node?
 - So far, our codes has been modified to run multiple jobs in a single run (called multiprob mode) since the minimum processor count per job is 512
- How are you dealing with, or planning to deal with, systems that have a traditional processor augmented by some sort of accelerator such as a GPU or FPGA or similar?
 - Our code groups have taken steps to investigate how to take advantage of these new features
 - Not a problem directly related to UQ runs, for now

<u>Summary</u>

- Recommendations on NERSC architecture, system configuration and the associated service requirements needed for your science
 - Processor speed/number of compute nodes tradeoff
 - Parallel I/O (fast read, common libraries)
 - Memory per CPU (3D memory footprint for 3D explicit hydrodynamics)
 - More advanced job submission system for large ensemble (negotiated)
 - Fault detection, recovery, reporting
- NERSC generally acquires systems with roughly 10X performance every three years. What significant scientific progress could you achieve over the next 3 years with access to 50X NERSC resources?
 - Higher fidelity UQ on multiple-model predictive science studies
- What "expanded HPC resources" are important for your project?
- General discussion